Solving Geometric Covering Problems by Data Reduction
نویسندگان
چکیده
We consider a scenario where stops are to be placed along an already existing public transportation network in order to improve its attractiveness for the customers. The core problem is a geometric set covering problem which is NP-hard in general. However, if the corresponding covering matrix has the consecutive ones property, it is solvable in polynomial time. In this paper, we present data reduction techniques for set covering and report on an experimental study considering real world data from railway systems as well as generated instances. The results show that data reduction works very well on instances that are in some sense “close” to having the consecutive ones property. In fact, the real world instances considered could be reduced significantly, in most cases even to triviality. The study also confirms and explains findings on similar techniques for related problems.
منابع مشابه
Geometric lattice structure of covering and its application to attribute reduction through matroids
The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric lattices to sol...
متن کاملGeometric Programming with Stochastic Parameter
Geometric programming is efficient tool for solving a variety of nonlinear optimizationproblems. Geometric programming is generalized for solving engineering design. However,Now Geometric programming is powerful tool for optimization problems where decisionvariables have exponential form.The geometric programming method has been applied with known parameters. However,the observed values of the ...
متن کاملGlobal optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملA Systematic Framework for Solving Geometric Constraints Analytically
A systematic framework is presented for solving algebraic equations arising in geometric constraint solving. The framework has been used successfully to solve a family of spatial geometric constraint problems. The approach combines geometric reasoning, symbolic reduction, and homotopy continuation.
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کامل